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1. 

Consider first the simple case of a rectangular plate subjected to a uniaxial state of
in-plane stress and simply supported along the edges; Figure 1(a). The determination of
the natural frequencies of the structural element constitutes a straightforward problem
within the realm of the classical theory of vibrating plates which is solved in a rather
elementary fashion substituting the displacement amplitude

W(x, y)= s
a

n=1
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bnm sin
npx
a

sin
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b

(1)

in the time-independent Lagrange-Sophie Germaine partial differential equation

D94W−Nx 12W/1x2 − rhv2
nmW=0, (2)

where the v2
nm’s are the circular natural frequencies of the system.† If due to operational

reasons, e.g., passage of conduits, ducts or electrical cables, one places a circular hole at

Figure 1. Vibrating plate under study: (a) solid plate, Nx =Sx , Ny =Nxy =0; (b) plate with a central circular
hole; Nx =Nx (x, y), Ny =Ny (x, y), Nxy =Nxy (x, y).

† As it is customary in the vibrations field the frequency parameters will be expressed in dimensionless form:

Vnm =zrh/Dvnma2.
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Figure 2. Typical finite element net used in the present study (Ri /a=0·05).

the plate center, see Figure 1(b), the determination of the stress field is accomplished
solving the corresponding plane stress problem governed by Airy’s equation [1]

94U=0 (3)

and appropriate boundary conditions.
Once the stress field is evaluated one must substitute the expressions for Nx (x, y),

Ny (x, y), and Nx, y (x, y), in the vibrating plate equation which now reads

D94W−0Nx
12W
1x2 +2Nxy

12W
1x1y

+Ny
12W
1y2 1− rhv2

nmW=0. (4)

An exact analytical determination of the natural frequency coefficients seems out of the
question and one must defer to approximate analytical or numerical procedures.

The present study deals with accurate determinations of the first five natural frequency
coefficients of simply supported square plates for two different sized-holes and a rather
wide range of values of applied stresses using a well known finite element code [2]. The
main goal of this study is to determine the effect of a severe stress concentration field
upon the natural frequencies of a basic vibrating structural element.

2.   

The numerical results have been obtained using SAMCEF finite element code with
hybrid elements of triangular and rectangular shape (elements type 55 and 56 of the
SAMCEF Library). All calculations were performed with a finite element net containing
1694 elements and 1468 nodes. It is important to point out that some verifications were
performed taking 2718 elements and 2344 nodes. The eigenvalues determined using the
latter net practically agreed with the results obtained using the previously mentioned net.
The Poisson ratio was taken equal to 0·30 in all calculations.

3.    

Table 1 depicts the first five natural frequency coefficients Vi =zrh/Dvi a2, of a solid
plate, computed (1) using the finite element method and (2) by means of the exact
analytical formulation, for different values of the applied in-plane stress parameter
Sxa2/D. The maximum differences are of the order of 0·1%. When no applied stress is
acting on the plate, the exact and finite element values agreed to four significant
figures (19·74, 49·35, 49·35, 78·96 and 98·70).



   360

T 1

Values of Vi in the case of a simply supported solid, square plate subjected to a uniaxial
state of stress Sx

Sxa2/D
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Mode 1 5 10 20 50 100

1 a 19·99 20·95 22·10 24·23 29·72 37·11
b 19·99 20·95 22·10 24·23 29·72 37·10

2 a 49.46 49.86 50.35 51.33 54.14 58.53
b 49.44 49.85 50.34 51.31 54.12 58.50

3 a 49.76 51.33 53.22 56.81 66.43 79.93
b 49.77 51.31 53.20 56.79 66.40 79.89

4 a 79.24 80.23 81.46 83.85 90.66 100.98
b 79.20 80.20 81.42 83.81 90.60 100.91

5 a 98.82 99.02 99.27 99.77 101.26 103.69
b 98.75 98.95 99.20 99.69 101.16 103.57

a Finite element solution; b exact, analytical results.

T 2

Values of Vi in the case of a simply supported square plate with a central circular hole
(Ri /a=0·05) subjected to Sx

Sxa2/D
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

Mode 1 5 10 20 50 100

1 19·93 20·90 22·05 24·20 29·72 37·14
2 49·46 49·86 50·35 51·32 54·15 58·54
3 49·76 51·32 53·20 56·79 66·39 79·86
4 79·10 80·10 81·33 83·74 90·57 100·94
5 98·36 98·60 98·86 99·37 100·85 103·28

Table 2 shows the frequency coefficients when a central hole (Ri /a=0·05) is cut in the
plate. The eigenvalues are, in general, slightly lower for a given value of Sxa2/D, than
those corresponding to a solid plate, except for the first two eigenvalues in the case when
Sxa2/D=100 where they are slightly higher. A similar situation is observed when
Ri /a=0·10 (Table 3), although now, the value of V1 for Sxa2/D=50 is also slightly
higher in the case of the plate with the circular hole than when the plate is solid.

Clearly, independently of the presence of in-plane stresses, as a hole is placed in the
structural element, the plate loses a percentage of mass and flexural rigidity. Depending
upon which effect possesses more importance, frequencies will increase, stay constant or
decrease. In any case of a simply supported square plate with a central hole the
fundamental frequency remains practically constant as the size of the hole increases for
Ri /aQ 0·15 when no applied stresses act on the system [3]. This situation is illustrated in
Table 4 where the first five values of Vi are shown as functions of Ri /a. It becomes
apparent in the situation under study that the stress concentration field does not alter
significantly, at least the lower natural frequency coefficients; their magnitudes being
determined primarily by the value of the applied in-plane stress.
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T 3

Values of Vi in the case of a simply supported square plate with a central circular hole
(Ri /a=0·10) subjected to Sx

Sxa2/D
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

Mode 1 5 10 20 50 100

1 19·79 20·28 21·96 24·14 29·74 37·24
2 49·40 49·80 50·30 51·28 54·13 58·56
3 49·70 51·25 53·12 56·68 66·21 79·60
4 78·74 79·76 81·01 83·45 90·39 100·89
5 97·92 98·13 98·38 98·87 100·32 102·70

T 4

Values of Vi when no stresses are acting: effect of the concentric
circular hole

Ri /a
ZXXXXXXXXXCXXXXXXXXXV

Mode 1 0·05 0·10

1 19·74 19·67 19·53
2 49·35 49·35 49·29
3 49·35 49·35 49·29
4 78·96 78·84 78·49
5 98·70 98·20 97·81
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